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1. Introduction

The physics of magnetic multi-layered systems is very rich, and these systems have
a lot of practical applications. It is well known that the dipole-dipole interaction
in such systems can play a crucial role for the determination of both the ground
state (e.g., parallel/antiparallel configuration) and the spectra of elementary magnetic
excitations – spin wave modes. Continuous multi-layered ferromagnetic thin films
have been extensively studied for more than thirty years. Recent developments in
nano-lithography allowed one to investigate magnetization dynamics in nano-patterned
magnetic structures – thin single- and multi-layered magnetic elements with lateral
sizes below 1 µm. The examples of such structures are ordered arrays of long magnetic
stripes with micro-metric width [1, 2] and arrays of long magnetic stripes situated
above a continuous magnetic film [3].

Another class of nano-patterned magnetic systems where dipole-dipole interaction
plays an important role are nano-scale spin-torque oscillators (STO). Since the
first observations of microwave generation by STO [4], extensive experimental work
have been reported concerning the frequency measurements of this generation in
low-amplitude regime for the large variety of magnetic multi-layer nano-structures.
Typically, the experimentally observed dependence of the measured frequency on the
bias magnetic field can be well described by the traditional Kittel’ expression for
both in-plane and perpendicularly magnetized cases, provided that the saturation
magnetization is decreased by 30 to 75 percent depending on a system [4, 5, 6, 7, 8].
This apparent reduction of the saturation magnetization in nano-patterned systems
was sometimes attributed to the effect of patterning and sometimes to the influence
of the dipole-dipole interaction between the magnetic layers. To the best of our
knowledge, however, such influence has never been systematically studied theoretically,
and it is unclear whether the dipole-dipole interaction alone can lead to a such
substantial apparent reduction of the saturation magnetization.

Micro- and nano-structured ferromagnets can also be efficiently used as microwave
absorbers in monolithic microwave integrated circuit due to the fact that their
ferromagnetic resonance (FMR) frequency can be tuned in the range of several tens of
gigahertz by applying external magnetic fields. However, the application of large
external magnetic fields is in many cases inconvenient, and it has been recently
proposed to control the FMR frequency using the dipolar magnetic field in patterned
magnetic multi-layers [9, 10]. This approach, again, requires a deeper understanding of
the influence of the dipole-dipole interaction on the spectrum of spin wave excitations
in magnetic layered and patterned structures.

In the present paper we theoretically studied the influence of the dipole-dipole
interaction on the spatially-uniform spin wave modes in an in-plane magnetized two-
layered magnetic nano-pillar shown on figure 1. We developed a simple analytical
formalism of accounting the mutual dipolar interaction between the magnetic nano-
elements which can be used to study spin wave excitations in arbitrary patterned
magnetic system. We calculated frequencies of coupled spin wave modes in a two-
layered magnetic nano-pillar and demonstrated that these frequencies can be described
using Kittel-like expressions with renormalized saturation magnetization and bias
magnetic field. We demonstrated that the dipolar interaction between the layers,
indeed, leads to an apparent reduction of the saturation magnetization, but this effect
in many cases is not sufficiently large to explain completely the observed reduction of
saturation magnetization in typical experiments with nano-pillar STOs.
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Figure 1. (Color online) Nano-pillar with two ferromagnetic layers coupled by
the dipole-dipole interaction in constant bias magnetic field Hext, directed along
the x-axes. Thicknesses of the layers L1,2 and the distance d between them
are much smaller than the layers radii R. The layers have the same saturation
magnetization M1 = M2 = M (4πM = 8 kOe, which is typical for permalloy).

2. Formulation of the problem and general formalism

We consider magnetization dynamics of a magnetic nano-pillar schematically shown
in figure 1. The pillar consists of two thin (thicknesses L1 and L2) circular magnetic
disks of the same radius R, separated by a non-magnetic spacer of the thickness d. We
assume that the distribution of magnetization in each layer is spatially-uniform, which
is justified for relatively small lateral sizes of the nano-disks (R ≤ 50 nm). Although
our approach is valid for any geometrical shape of the pillar, in actual calculations
we will assume that the thicknesses of the disks L1,2 and the non-magnetic spacer d
are much smaller than the disks’ radii R. For simplicity, we neglect crystallographic
anisotropy of the magnetic layers and assume that the saturation magnetizations of
both layers are equal, M1 = M2 = M . Also, below we will consider only the case
of an in-plane magnetized magnetic nano-pillar with the external magnetic field Hext

applied along the x-axis (see figure 1).
To find the frequencies of coupled spin wave excitations in the above described

magnetic pillar, it is sufficient to consider only the conservative dynamics of
magnetization (i.e., to neglect terms that describe energy dissipation and excitation
of spin wave modes). In this case the dynamics of two-layered magnetic nano-
pillar is described by a system of two conservative Landau-Lifshits equations for the
magnetization vectors Mj (j = 1, 2) of magnetic layers:

∂Mj

∂t
= γ [Heff,j ×Mj ] , (1)
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where γ ≈ 2π ·2.8 MHz/Oe is the modulus of the gyromagnetic ratio and the effective
magnetic fields Heff,j can be written as

Heff,j = Hext +
2∑

k=1

Hj,k . (2)

Here Hext is the external bias magnetic field and Hj,k is the magnetodipolar field,
which is created by the k-th magnetic layer and acts on the j-th magnetic layer. Since
we are considering only the spatially-uniform excitations, the field Hj,k should be
understood as a real spatially-nonuniform field Hk(r), created by the k-th layer and
averaged over the volume Vj of the j-th layer:

Hj,k =
1

Vj

∫
Vj

Hk(rj)d
3rj . (3)

The magnetodipolar field Hk(r), created by the spatially-uniform magnetization
distribution Mk of the k-th layer, can be written in the form

Hk(r) = −4πN̂k(r)Mk , (4)

where the position-dependent demagnetization tensor N̂k(r) is given by [11, 12]:(
N̂k(r)

)
sp

= − 1

4π
· ∂2

∂xs∂xp

∫
Vk

d3rk
|r− rk|

. (5)

This expression for the magnetodipolar field Hk(r) is valid both inside and outside of
the k-th layer.

Using equations (3)–(5), one can write the effective magnetic field (2) in j-th layer
in the concise form

Heff,j = Hext − 4π
∑
k

N̂jkMk , (6)

where the tensors N̂jk are given by

N̂jk =
1

Vj

∫
Vj

N̂k(rj)d
3rj . (7)

It is clear, that for k = j the tensor N̂jj (self-demagnetization tensor) coincides with
the standard effective demagnetization tensor for the j-th magnetic layer. The tensors
N̂jk for j 6= k (cross-demagnetization tensors) describe the mutual dipolar coupling
between the j-th and k-th layers.

It should be noted that one can use equation (6) to describe the dipolar coupling
between the magnetic elements of any shape, as long as the spin wave excitations are
considered to be spatially uniform within each element. Independently of the shape of
the magnetic elements, the self- and cross-demagnetization tensors N̂jk are symmetric,
and their traces are given by

Tr
(
N̂jk

)
= δjk ,

where δjk is the Kronecker symbol, and different cross-demagnetization tensors are
related by the expression:

VjN̂jk = VkN̂kj .

These properties directly follow from the definition (7) and, from the physical
point of view, reflect the conservative nature of the magnetodipolar interaction.
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Due to the azimuthal symmetry of the considered system of two disks (see figure

1), demagnetization tensors N̂jk are diagonal and can be represented as follows:

N̂jk =

 ρjk 0 0
0 ρjk 0
0 0 δjk − 2ρjk

 , (8)

i.e. each tensor depends only on one parameter ρjk. Using the definition (7), the
dipolar parameters ρjk can be expressed in terms of six-fold multiple integrals as
follows:

ρjk =
1

8πVj

∫
Vj

d3rj

∫
Vk

d3rk

(
3(zj − zk)2 − |rj − rk|2

|rj − rk|5

)
.

This integral can be taken over the area of the first and the second layers after
the introduction of new integration variables, one of which is the difference between
the in-plane radius-vectors of the first and the second layers and the other one is the
in-plane radius-vector in one of the layers. Then, the integral for the parameter ρjk
can be simplified to

ρjk =
1

2π
· Lk

R

∫ 1

0

dzj

∫ 1

0

dzkf

(
Lj

R
zj +

Lk

R
zk +

d

R

)
(9)

for j 6= k and to

ρjj =
1

2π
· Lj

R

∫ 1

0

dz(1− z)f
(
Lj

R
z

)
(10)

for j = k. Here

f(α) =

[
2 + α2

α
K

(
− 4

α2

)
− αE

(
− 4

α2

)]
, (11)

where K(ξ) and E(ξ) are the complete elliptic integrals of the first and second kind,
respectively.

The function f(α) has a logarithmic singularity when α → 0. Extracting this
singularity and retaining the terms up to O(α2 ln(α)) one obtains an approximate
analytic expressions for the dipolar parameters ρjk in the case of thin disks (L1,2 � R
and d� R):

ρjk =
C

2π

Lk

R
− 1

4π(Lj/R)

[
F

(
d

R

)
− F

(
d+ Lj

R

)

− F
(
d+ Lk

R

)
+ F

(
d+ Lj + Lk

R

)]
(12)

for j 6= k and

ρjj =
1

2π

Lj

R

[
C − ln

(
Lj

R

)]
(13)

for j = k. Here C = −1/2 + ln(8) ≈ 1.58 and F (ζ) = ζ2 ln |ζ|. It should be noted,
that (13) can be obtained from (12) by assuming that Lk = Lj and d = −Lj .

Dimensionless parameters ρjk provide a convenient measure for the magnetodipo-
lar coupling between the layers (or, in a general case, between arbitrarily shaped mag-
netic elements). In the limit of very thin disks ρjk → 0, and the dipolar coupling
between the layers vanishes.
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Figure 2. (Color online) The dimensionless dipolar parameters ρjk, which
define the self- and cross-demagnetization tensors for the system of two thin disks
coupled by dipole-dipole interaction, as functions of the aspect ratio of the first
disk L1/R. The aspect ratio of the second disk and the distance between the
disks are fixed: L2/R = 1/10, d/R = 1/25. Solid, dashed, and dotted lines were
calculated from the approximate analytical expressions (12) and (13). Dots were
obtained from the exact expressions (9) and (10).

Figure 2 shows how the parameters ρjk depend on the aspect ratio of the first
layer L1/R. The aspect ratio of the second layer and the distance between the layers
were kept fixed, L2/R = 1/10 and d/R = 1/25. One can see that for the typical
parameters of a nano-pillar ρjk ∼ 0.05, which corresponds to the amplitude of the
dipolar magnetic field equal to 4πρjkM ∼ 400 Oe. This field is larger than the
ferromagnetic resonance linewidth in typical ferromagnetic materials (one can also
compare the dimensionless coupling parameter ρjk ∼ 0.05 with the dimensionless
Gilbert damping parameter αG ∼ 0.01). This means, that the damping processes
can not destroy the dipolar coupling between the magnetic layers, and the spin wave
modes excited in the structure shown in figure 1, indeed, should be considered as
coupled spin wave modes of the two magnetic layers.

3. The spectrum of coupled linear spin wave modes in a magnetic pillar

We consider the case of a two-layer magnetic pillar under the influence of a constant
in-plane bias magnetic field that is sufficiently large to guarantee that in the ground
state of the system both layers are magnetized in-plane and parallel to the bias field.
We linearize equation (1) by the substitution:

Mj(t) = M
[
x + (mje

iωt + c.c.)
]
. (14)
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The first term here corresponds to the equilibrium orientation of the
magnetization vectors, whereas the second term describes the small-amplitude (linear)
spin wave modes. The dimensionless vectors mj are orthogonal to the unit vector x
in the linear approximation. Keeping only the terms that are linear in mj , we get the
following eigenvalue problem for the determination of the frequencies ω and profiles
mj of the coupled spin wave modes of the pillar:

iωmj = γx×

[
(Hext − 4πM

∑
k

ρjk)mj + 4πM
∑
k

N̂jkmk

]
. (15)

The above system has non-trivial solutions when(
ω2 − ω̃2

1

) (
ω2 − ω̃2

2

)
= Φint , (16)

where

Φint = −4ρ12ρ21ω
2
M

(
ω2 + ρ12ρ21ω

2
M − ωh,1ωh,2 −

ω̃2
1ω̃

2
2

4ωh,1ωh,2

)
. (17)

Here ωM = 4πγM , ωh,j = γhj . The field hj is the static magnetic field acting on
the j-th layer, i.e. it is the external magnetic field plus the static dipolar field created
by the other layer:

hj = Hext − 4πρjj ′M . (18)

where j ′ = 3− j.
The frequency ω̃j in (16) is the precession frequency in the j-th layer with account

of only the static coupling to the other layer:

ω̃j = γ
√
hj [hj + 4π(1− 3ρjj)M ] . (19)

Clearly, this expression coincides with the Kittel’s formula for ferromagnetic
resonance frequency with the external field hj .

The term Φint in (16) describes the dynamic coupling between the two layers.
Due to the prefactor ρ12ρ21, this term vanishes when the thickness of either magnetic
layer reduces to zero. Physically, this means that a significant dynamic coupling is
possible only between the magnetic layers of comparable volumes. To the best of our
knowledge, the dynamical coupling described by Φint was neglected in all the previous
theoretical studies of magnetization dynamics in two-layered nano-pillars.

Equation (16) allows one to find an exact analytic solution for the frequencies
ω1,2 of the two spatially uniform spin wave modes existing in the considered system.
This solution, however, is quite cumbersome. Fortunately, it is possible to derive a
relatively simple approximate expression for the spin wave frequencies of the above
modes in the form of a traditional Kittel’s formula with renormalized values of the
saturation magnetization and effective anisotropy fields:

ω1,2 = γ

√(
Hext − H̃1,2

)(
Hext − H̃1,2 + 4πM̃1,2

)
, (20)

where the apparent saturation magnetization values are given by

M̃1 =

(
1− 3

ρ11ρ21 + ρ22ρ12 + 2ρ12ρ21
ρ12 + ρ21

)
M , (21)

M̃2 =

(
1− 3

ρ11ρ12 + ρ22ρ21 − 2ρ12ρ21
ρ12 + ρ21

)
M , (22)
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and the effective anisotropy fields are equal to

H̃1 = 0 , (23)

H̃2 = 4π(ρ12 + ρ21)M . (24)

It should be noted that the frequencies (20) are the exact solutions of equation
(16) in two limiting cases: (i) when the layers have the same thickness, and (ii) when
the thickness of one of the layers tends to zero.

For symmetrical system (both layers have identical thicknesses), the mode with
the frequency ω1 corresponds to symmetric excitations (the magnetization precession
in both layers has the same phase), whereas the mode with the frequency ω2 describes
antisymmetric excitations (opposite phases of precession in two interacting layers).
When the thicknesses of the layers are different one can still classify the mode ω1 as
a quasi-symmetric mode, and mode ω2 as a quasi-antisymmetric mode.

The frequencies ω1,2 of the coupled linear excitations in a magnetic pillar are
presented in figure 3. One can see that approximate expressions (20) fit the exact
solution of the secular equation (16) with high accuracy at small bias magnetic fields.
When the bias field reaches the value

H∗ = H̃2
4πM̃2 − H̃2

4π(M̃1 − M̃2)− 2H̃2

, (25)

the curves that correspond to the approximate expressions (20) intersect, while the
curves that correspond to the exact solution of (16) do not (see figure 3b). The modes
described by the secular equation (16) change their symmetry near this point, whereas
the modes described by the approximate expressions (20) retain their symmetry.
Above the field H∗ the approximate solutions (20) again give a reasonably good
description of the coupled spin wave modes of a pillar.

One can see from (20) that for a sufficiently small bias field Hext < H̃2 (H̃2 =
0.7 kOe for the spectrum presented in figure 3) the frequency of the antisymmetric
mode ω2 becomes imaginary. This means that the ground state corresponding to
parallel magnetization of the layers is unstable and the the magnetic pillar will
spontaneously relax towards the antiparallel ground state.

As one can see from figure 3a, both spin wave modes of a pillar lie lower than
the Kittel’s modes of continuous magnetic layers, which corresponds to the apparent
decrease of the saturation magnetization. The relative decrease of the saturation
magnetization (M̃1,2 − M)/M with respect to the saturation magnetization of a
continuous (unbounded) ferromagnetic film as a function of aspect ratio of the first
layer L1/R is demonstrated in figure 4. One can see that when the difference in the
layer thicknesses increases (which means weakening of the dynamic dipolar coupling
between the layers) the effective decrease of the saturation magnetization occurs
mainly due to the self-demagnetization effects. In the region of the approximately
equal thicknesses of the layers, the dynamical coupling leads to a further decrease
of the apparent saturation magnetization for the quasi-symmetric mode, but to the
increase (compared to the case of the uncoupled layers) of the effective magnetization
for the antisymmetric mode.

4. Conclusions

We demonstrated analytically that the magnetodipolar interaction in a two-layered
magnetic pillar can be fully described by two diagonal tensors for every layer: one of
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Figure 3. (Color online) (a) The frequencies of linear excitations in a two-
layered magnetic pillar as a function of the bias magnetic field. Solid lines:
exact solutions of the secular equation (16). Triangles and dots: the approximate
expressions (20). Dashed and dotted lines: traditional Kittel’s expressions for an

in-plane magnetized ferromagnetic film [13]: ωK,1 = γ
√
Hext(Hext + 4πM) and

ωK,2 = γ
√

(Hext − H̃2)(Hext − H̃2 + 4πM), respectively. (b) The frequencies
(ω−γHext)/2π as functions of the bias magnetic field. Solid lines: exact solutions
of the secular equation (16). Triangles and dots: the approximate expressions (20).
Parameters used for the calculation: L1/R = 1/5, L2/R = 1/10, d/R = 1/25.
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Figure 4. (Color online) Solid lines: relative decrease of the apparent

saturation magnetization (M̃1,2 − M)/M for both quasi-symmetric and quasi-
antisymmetric modes with respect to the saturation magnetization of an
unbounded ferromagnetic film. Dotted and dashed lines: the effective decrease
of the saturation magnetization for the first and the second isolated (uncoupled)
layers, respectively. Parameters used for the calculation: L2/R = 1/10, d/R =
1/25.

them is the usual tensor of demagnetizing coefficients (self-demagnetization tensor),
while the other one is the cross-demagnetization tensor which describes the dipole-
dipole interaction between the different layers. Every tensor is fully characterized by
only one dimensionless parameter which depends only on the relative geometrical sizes
of the pillar’s magnetic layers.

The spectrum of coupled oscillations of a two-layered nano-pillar consists of two
modes with different frequencies, which can be classified as quasi-symmetric and quasi-
antisymmetric modes. For low (high) bias magnetic fields the frequency of the quasi-
antisymmetric mode is smaller (larger) than the frequency of the quasi-symmetric
mode.

We also demonstrated that the frequencies of coupled spin wave modes of a
magnetic pillar can be described by the traditional Kittel’s expression with reduced
saturation magnetization and renormalized bias field. The magnetodipolar interaction
leads to apparent decrease of the saturation magnetization for both modes, but this
decrease is more pronounced for the quasi-symmetric mode. For quasi-antisymmetric
spin wave mode the apparent reduction of saturation magnetization does not exceed
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10 % for realistic nano-pillar parameters, while for the quasi-symmetric mode it can
be five times larger.

We believe that the apparent reduction of the static magnetization observed in
the spin-torque experiments with magnetic nano-pillars [4, 5, 6, 7, 8] can be, at least in
part, attributed to the above described effect of dynamic dipolar interaction between
the nano-pillar magnetic layers.
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